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Abstract

Due to the ongoing concern about the reliability of Staphylococcus breakpoints (interpretive 

criteria) for other β-lactam agents, the Clinical and Laboratory Standards Institute recently 

approved the elimination of all breakpoints for antistaphylococcal β-lactams except for penicillin, 

oxacillin or cefoxitin, and ceftaroline. Routine testing of penicillin and oxacillin or cefoxitin 

should be used to infer susceptibility for all β-lactams with approved clinical indications for 

staphylococcal infections. It is critical for laboratories to reject requests for susceptibility testing of 

other β-lactams against staphylococci and to indicate that susceptibility to these agents can be 

predicted from the penicillin and oxacillin or cefoxitin results. This article reviews β-lactam 

resistance mechanisms in staphylococci, current antimicrobial susceptibility testing and reporting 

recommendations for β-lactams and staphylococci, and microbiologic data and clinical data 

supporting the elimination of staphylococcal breakpoints for other β-lactam agents.
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Staphylococci are ubiquitous colonizers of the skin and mucosa and are responsible for a 

variety of infections, including those involving the bloodstream, skin and soft tissue, lower 

respiratory tract, bone, and joints. Of the large number of species within the staphylococcal 

group, Staphylococcus aureus is considered to be the most virulent and is the leading cause 

of healthcare-associated infections [1]; however, coagulase-negative staphylococci (CoNS) 

are frequently associated with catheter and prosthetic device infections. Antimicrobial 

therapy is essential for most staphylococcal infections, and in vitro susceptibility testing 

plays a pivotal role in the selection of antimicrobial agents, as susceptibility of 

staphylococcal strains to first-line agents is not predictable [2]. For most staphylococcal 

isolates, susceptibility to penicillinase-stable penicillins (eg, oxacillin) is the most important 

result a laboratory can provide as this result will indicate whether or not a β-lactam agent 

(with the exception of ceftaroline, as discussed below) might be appropriate for treatment of 

an infection caused by the isolate. This paper discusses the rationale for recommending 

testing of only penicillin, oxacillin or cefoxitin, and ceftaroline to determine staphylococcal 

susceptibility to β-lactams. Susceptibility to these drugs allows inference of susceptibility to 

other antistaphylococcal β-lactams.

β-LACTAM RESISTANCE MECHANISMS IN STAPHYLOCOCCI AND THEIR 

DETECTION

Following its introduction in the 1940s, penicillin was used widely for treatment of S. aureus 
infections. However, penicillin resistance due to penicillinase production quickly emerged 

[3], and by the late 1960s, >80% of S. aureus isolates were resistant to penicillin [4]. 

Production of β-lactamase, which is conferred by blaZ, inactivates penicillin by hydrolyzing 

the β-lactam ring [5]. Four types of blaZ have been identified: types A, C, and D are 

plasmid-mediated, whereas B is typically chromosomal [6]. To circumvent the problem of 

penicillin hydrolysis by β-lactamase, researchers in 1959 synthesized methicillin, a related 

compound containing a β-lactam ring structure with added 2,6-dimethoxyphenyl side chains 

that protects the β-lactam ring from cleavage by penicillinase [7]. By 1961, within a year of 

the drug’s introduction into clinical practice [8], methicillin-resistant S. aureus (MRSA) 

appeared in England, and by the 1980s MRSA had become widespread globally [9, 10].

The vast majority of methicillin resistance in S. aureus is mediated by mecA, which is 

carried on the mobile staphylococcal cassette chromosomal mec element (SCCmec) and 

encodes penicillin-binding protein (PBP) 2a. PBPs are essential for cell growth and survival 

in Staphylococcus species and have high affinity for most β-lactams; binding of β-lactams 

by native PBPs is lethal for staphylococcal cells [11–13]. PBP2a, an inducible 

transpeptidase, confers high-level resistance to methicillin and other β-lactams [14]. PBP2a 

has low affinity for β-lactams except ceftaroline and functions as a surrogate for the native 

high-affinity staphylococcal PBPs in the presence of high concentrations of β-lactams [11, 

15–17].

In the 1980s, oxacillin, a semi-synthetic penicillinase-stable penicillin, was shown to be a 

reliable alternative to methicillin for detecting resistance to penicillinase-stable penicillins in 

staphylococci [18, 19]. In the 1990s, oxacillin replaced methicillin in clinical use in the 
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United States and became the agent of choice for in vitro testing to represent penicillinase-

stable penicillins when methicillin ceased to be commercially available. Other penicillinase-

stable penicillins used clinically include nafcillin, dicloxacillin, cloxacillin, and 

flucloxacillin, all highly active antistaphylococcal antimicrobial agents [20–22].Tests that 

target mecA or PBP2a are considered to be the most accurate methods of predicting 

resistance to oxacillin and other penicillinase-stable penicillins in staphylococci, and isolates 

that carry the mecA gene or produce PBP2a should be reported as oxacillin resistant [23].

Testing recommendations for detection of MRSA were further refined in the 2000s, when it 

was established that cefoxitin is more reliable than oxacillin for detection of mecA-mediated 

resistance in staphylococci [24]. Cefoxitin detects oxacillin heteroresistance better than 

oxacillin due to its strong induction of PBP2a [25, 26].The Clinical and Laboratory 

Standards Institute (CLSI) now recommends cefoxitin disk diffusion (DD) or cefoxitin or 

oxacillin minimum inhibitory concentration (MIC) tests to test for mecA-mediated oxacillin 

resistance in S. aureus and Staphylococcus lugdunensis; for all other CoNS, cefoxitin DD is 

the preferred method [27–29].

Methicillin resistance in staphylococci can also occur by mechanisms other than mecA, 

although such mechanisms are believed to be rare. Other mechanisms of methicillin 

resistance include hyperproduction of β-lactamase (the borderline oxacillin-resistant S. 
aureus [BORSA] phenotype) [30], production of modified PBPs (MOD-SA) [31], and 

expression of a mecA homologue, termed mecC [32]. BORSA and MOD-SA typically 

demonstrate MICs near the oxacillin breakpoint, are not resistant to multiple agents, and are 

believed to have little clinical relevance. Resistance mediated by mecC can confer higher 

oxacillin MICs similar to mecA-mediated resistance, and has been documented in strains 

causing infection in both humans and animals [33–36]. Of note, the novel mecA homologue, 

mecC, cannot be detected by tests targeting mecA or PBP2a, instead requiring MIC-based 

cefoxitin or oxacillin susceptibility tests or tests directed at mecC [37, 38].

Previous versions of the CLSI M100 standard included staphylococcal MIC and DD 

breakpoints (interpretive criteria) for numerous additional antistaphylococcal β-lactams with 

a US Food and Drug Administration (FDA)–approved clinical indication for treating 

staphylococcal infections, including penicillins, β-lactam/β-lactamase inhibitor 

combinations, cephems, and carbapenems [39]. However, penicillin and oxacillin or 

cefoxitin were the only antimicrobial agents recommended for routine testing of 

staphylococci, and it was specified that results from these agents should be used to infer 

susceptibility to all other penicillins, β-lactam/β-lactamase inhibitor combinations, cephems, 

and carbapenems (Table 1). Additionally, it was noted that other β-lactams should never be 

reported as susceptible for methicillin-resistant staphylococci (MRS), even if tested as 

susceptible in vitro. Table 2 summarizes the β-lactam resistance mechanisms and testing 

methods for staphylococci.

ESTABLISHMENT OF VALIDATED β-LACTAM BREAKPOINTS

Most β-lactam breakpoints for staphylococci were established many years ago, prior to the 

development of the CLSI M23 [40] process currently used for establishing breakpoints. As 
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such, there has been ongoing concern about the reliability of breakpoints other than those for 

oxacillin, cefoxitin and penicillin. The “inferred susceptibility” rule directing laboratories to 

infer results for other β-lactams from results of penicillin and oxacillin, and later cefoxitin, 

has been in place in the CLSI M100 standard since 1991, although Staphylococcus 
breakpoints for other β-lactam agents were also included.

At the June 2012 meeting of the CLSI Subcommittee on Antimicrobial Susceptibility 

Testing, it was decided to remove the DD and MIC breakpoints for all antistaphylococcal β-

lactams. At the same time, DD and MIC breakpoints for ceftaroline, a new cephalosporin 

agent with activity against MRSA, were established for S. aureus, including MRSA. 

Susceptibility to ceftaroline can be inferred based on oxacillin or cefoxitin susceptibility, but 

becausemost but not all oxacillin- or cefoxitin-resistant S. aureus is ceftaroline susceptible, 

ceftaroline must be tested directly if it is to be reported for MRSA [27].

Now the CLSI unequivocally recommends that susceptibility to cephalosporins and other β-

lactams with FDA-approved clinical indications for staphylococcal infections (Table 3) be 

deduced from the results of testing penicillin and oxacillin or cefoxitin (Table 1). Of note, 

ceftazidime is generally not thought to be a potent antistaphylococcal agent despite FDA-

approved indications [41–43], and, in agreement with European Committee for 

Antimicrobial Susceptibility Testing (EUCAST), it has been recommended to exclude 

testing and reporting of staphylococcal susceptibility to this agent. Therefore, it is not 

included in the list of antistaphylococcal agents that can be inferred by testing penicillin and 

oxacillin or cefoxitin [44].

Testing and reporting recommendations for staphylococci are now similar for CLSI and the 

EUCAST (Table 2). Clinical breakpoints for antistaphylococcal β-lactams were never 

approved by EUCAST, which recommends that all antistaphylococcal cephalosporins, β-

lactams/β-lactamase inhibitor combinations, and carbapenem results be inferred from 

cefoxitin susceptibility.

IN VITRO DATA SUPPORTING CLSI RECOMMENDATIONS

There is currently no strong evidence to support the categorization of an MRS strain as 

resistant to a β-lactam agent when in vitro susceptibility testing indicates that it is 

susceptible. However, due to the lack of appropriate clinical studies, including a small 

number of cases reporting clinical failure, it is postulated that all MRS isolates should be 

considered resistant to all antistaphylococcal cephalosporins, β-lactams/β-lactamase 

inhibitor combinations, and carbapenems, except for ceftaroline [27] and ceftobiprole [45], 

an agent recently approved for use in Europe for treatment of pneumonia. To our knowledge, 

there are no reports that indicate susceptibility results for other β-lactams have been useful 

for predicting clinical outcome once an isolate is known to be methicillin-susceptible 

staphylococci (MSS) or MRS. The occasional exception is a penicillin result for MSSA.

Several in vitro susceptibility studies have demonstrated that the vast majority of MSS test 

susceptible (based on previous CLSI interpretive criteria) to the cephalosporins and 

carbapenems clinically indicated to treat staphylococcal infections [46–48]. Some MSS 
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isolates have been reported as resistant to the cephalosporins; however, detailed explanations 

of such observations are lacking. In a recent US survey of 4016 MSSA isolates collected 

between 2008 and 2010 from patients with a variety of infections, ceftriaxone MICs ranged 

from ≤0.06 to >8 µg/mL; 0.3% of isolates were considered resistant to ceftriaxone when 

using a combination of CLSI breakpoints (MIC ≥64 µg/ mL) and FDA breakpoints (MIC 

≥16 µg/mL). Of note, only 96% of the 4016 MSSA isolates were interpreted as susceptible 

to ceftriaxone, which may be attributed to the application of FDA breakpoints (MIC ≤4 

µg/mL) rather than former CLSI breakpoints (MIC ≤8 µg/mL). The authors did not indicate 

if ceftriaxone MIC results for the 4% (n = 160) of nonsusceptible isolates were confirmed 

[47].For CoNS, testing of 182methicillinsusceptible isolates demonstrated 100% 

susceptibility to cefepime (MIC ≤8 µg/mL) and 98.3% susceptibility to ceftriaxone (MIC ≤8 

µg/mL). Ceftriaxone MICs ranged from ≤0.25 to >32 µg/ mL, with 0.6% resistance (MIC 

>64 µg/mL). Confirmatory testing of the 1.7% (n = 3) of nonsusceptible isolates was not 

indicated in the study [48].

Conversely, although the majority of MRS isolates test resistant to the cephalosporins and 

carbapenems, it is not uncommon for some MRSA strains to test susceptible to various β-

lactam agents [47, 49, 50]. In a study of 98 MRSA isolates, 16 exhibited cephalothin MICs 

of ≤2 µg/mL and 10 isolates had cefuroxime, cefotaxime, and/or cefepime MICs of ≤8 

µg/mL, which would have been misinterpreted as susceptible. Another study reported a MIC 

range of ≤0.25 to >8 µg/mL to ceftriaxone in 4453 MRSA isolates, indicating susceptibility 

to ceftriaxone for some MRSA isolates when either FDA (MIC ≥16 µg/mL) or CLSI (MIC 

≥64 µg/mL) breakpoints were used [47]. Although broth microdilution testing of 36 

methicillin-susceptible CoNS strains demonstrated a correlation between susceptibility to 

methicillin (MIC ≤4 µg/mL) with susceptibility to cefradine, ceftriaxone, cephalothin, and 

cefamandole using former CLSI breakpoints (MIC ≤8 µg/mL), in vitro resistance to 

methicillin did not parallel resistance for 3 of the 4 agents tested against 26 methicillin-

resistant CoNS isolates. The percentage of MRSA isolates that tested susceptible was 7.7% 

for ceftriaxone (MIC ≤8 µg/mL), 84.6% for cephalothin (MIC ≤8 µg/mL), 96.2% for 

cefamandole (MIC ≤8 µg/mL), and 0% for cefradine (MIC ≤8 µg/mL). Of note, selective 

testing of only highly methicillin-resistant subpopulations (MIC >128 µg/mL) of cells 

isolated from all 26 CoNS strains dramatically decreased percent of isolates susceptible to 

0% for ceftriaxone, 3.8% for cephalothin, 46% for cefamandole and 0% for cefradine [50], 

demonstrating the presence of heteroresistant populations of MRS and potential for 

reporting falsely susceptible results when other β-lactams are tested in vitro [51, 52]. Table 4 

summarizes published in vitro susceptibility studies for MSS and MRS.

CLINICAL DATA SUPPORTING CLSI RECOMMENDATIONS

Clinical data supporting CLSI recommendations were previously reported 26–44 years ago 

[54–64], and it is well accepted that numerous β-lactam agents are effective in treating 

infections caused by MSS but are ineffective for treating infections caused by MRS [56, 59, 

61, 62, 64]. The efficacy of cefazolin in treating serious MSSA infections, including 

endocarditis and other deep-seated infections, is controversial. Some studies have reported 

cefazolin clinical failure in patients with serious MSSA infections due to the production of 

type A β-lactamase, instead reporting the superiority of nafcillin and oxacillin. These MSSA 
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isolates are reported to have a significant rise in cefazolin MIC when the bacterial inoculum 

is increased, referred to as the inoculum effect [65–69]. However, clinical response to 

cefazolin, and probably other β-lactams, in patients with serious MSSA infections is a 

complex process dependent on multiple factors, including bacterial load, antibiotic 

penetration, host immune system, and surgical interventions, and the presence of a high-

inoculum effect alone is unlikely to cause clinical failure [70]. In addition, contrasting 

studies, including a propensityscore-matched, case-control study, have reported clinical 

efficacy of cefazolin to be similar to nafcillin and cloxacillin for the treatment of MSSA 

bacteremia, including cases of endocarditis [20, 71]. Thus, future prospective studies are 

required to definitively determine the clinical efficacy of cefazolin, and other β-lactams, in 

the treatment of serious MSSA infections with high inoculum.

Despite the fact that MRS strains may test as susceptible to β-lactams using former CLSI 

breakpoints [55, 56, 59, 61], studies have indicated clinical failure when β-lactams were 

used to treat infections with mecA-positive staphylococci, regardless of the in vitro 

susceptibility results [54, 57, 58, 60, 63]. Clinical responses to cephalosporins (cephalothin, 

cephalexin, and cephaloridine) were evaluated in 31 patients with MRS septicemia, 7 of 

whom had endocarditis. All 31 strains had no zones of inhibition around methicillin (10 µg) 

and cephalexin (30 µg) disks, and 26 demonstrated reduced zones of inhibition for 

cephalothin (30 µg) and cephaloridine (30 µg) on trypticase soy agar containing 5% sodium 

chloride. When DD was performed on Mueller-Hinton agar, the same 26 strains 

demonstrated zones of 25–30 mm, which would have been interpreted as susceptible using 

former CLSI breakpoints, around the cephalothin and cephaloridine disks, confirming the 

ability of sodium chloride to improve the detection of β-lactam resistance [72] as well as the 

heterogeneous expression of resistance in these strains. MRS was recovered from blood 

culture after initiation of cephalosporin therapy in 21 of these patients, 20 of whom 

remained culture positive after day 3 of cephalosporin therapy. Importantly, in all 7 of the 

cases of endocarditis, cephalosporin therapy failed to produce negative blood cultures, 

whereas negative blood cultures were achieved in 75% of patients treated with non-β-lactam 

antistaphylococcal agents such as vancomycin and rifampin [54]. Overall, blood cultures 

from 17 of the patients remained positive until therapy was changed to a non-β-lactam agent, 

and 3 patients with endocarditis died. Multiple experimental models of endocarditis with 

methicillin-resistant strains of S. aureus and S. epidermidis have also demonstrated failure of 

therapy with β-lactams, including cephalothin, cefamandole, and imipenem [73–75].

Another study using macrobroth dilution and agar dilution methods demonstrated 

susceptibility (MIC range, 0.25–32 µg/ mL) to cephalothin among 61 MRSA isolates 

recovered from various clinical sites from 23 patients, 16 of whom received a cephalosporin 

in the interim between admission and isolation of MRSA, and 10 of whom were confirmed 

to have definite MRSA infections. Staphylococcus aureus isolates were considered to be 

resistant to methicillin at MIC >12.5 µg/mL but breakpoint criteria for cephalothin were not 

specified by the authors. Despite in vitro susceptibility to cephalothin, neither cephalothin 

nor cefazolin alone or in combination with an aminoglycoside was successful in eradicating 

infections in 7 of 10 patients, 4 of whom died [57]. This clinical failure is consistent with 

another study of patients with MRSA bacteremia in which only 1 of 10 patients treated with 

a cephalosporin alone had a therapeutic response [58].
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Regarding the importance of correctly identifying MSSA, one retrospective cohort and 

matched case-control study of 294 patients demonstrated that β-lactams are superior to 

vancomycin for treatment of MSSA bacteremia, with a 19% lower mortality rate with β-

lactam therapy [76]. Overall, these clinical studies highlight the importance of avoiding β-

lactams in cases of MRS infections, despite variable in vitro susceptibility results, and 

emphasize the efficacy of appropriate β-lactam treatment in cases of MSS infections (Table 

5).

HURDLES FOR LABORATORY

With the elimination of most β-lactam breakpoints from the CLSI M100 standard, 

laboratories need only test penicillin and oxacillin or cefoxitin to routinely predict activities 

of other antistaphylococcal β-lactams. This recommendation has been in CLSI standards for 

>2 decades. However, if penicillins are not being considered for a specific staphylococcal 

infection, a laboratory may refrain from testing and reporting this agent. As noted 

previously, susceptibility to the new anti-MRSA cephalosporins (eg, ceftaroline) can be 

predicted by susceptibility to oxacillin or cefoxitin (ie, MSSA), but ceftaroline should be 

tested and reported if it is being considered for MRSA therapy [27].

Laboratories are also encouraged to include a comment with the report to emphasize that 

staphylococci that are resistant to oxacillin or cefoxitin must be considered resistant to all 

antistaphylococcal β-lactam drugs, except for the newer anti-MRSA cephalosporins, which 

must be specifically tested. A microbiology laboratory may report the interpretation for a 

specific antistaphylococcal β-lactam agent, but should specify that the result is inferred from 

penicillin and oxacillin or cefoxitin testing rather than testing of that agent. For example, if 

ceftriaxone is on the hospital formulary, a comment may be added to the report that MRSA 

strains are resistant to ceftriaxone.

CONCLUSIONS

The prevalence of MRSA remains high in the United States, with current rates of 

approximately 50% [47, 78]. Surveillance of antimicrobial resistance patterns for healthcare-

associated infections reported in 2009–2010 to the National Healthcare Safety Network 

revealed MRSA rates of 43.7%–58.7%, depending on the type of healthcare-associated 

infection [79]. Although CLSI included breakpoints for β-lactams other than oxacillin, 

cefoxitin, penicillin, and ceftaroline in previous documents, sufficient evidence has now 

been accumulated to justify removal of these from the M100 standard. A consensus was 

reached by the CLSI Subcommittee on Antimicrobial Susceptibility Testing in June 2012 to 

remove all staphylococcal breakpoints for β-lactams except for the aforementioned agents, 

primarily based on the facts that (1) results from testing oxacillin or cefoxitin and penicillin 

can be used to deduce susceptibility for other antistaphylococcal β-lactams (for MRSA, 

ceftaroline must be tested separately); (2) the appropriateness of breakpoints for 

susceptibility testing of other β-lactams has not been rigorously examined; and (3) inclusion 

of other β-lactam breakpoints poses a risk for the reporting of MRS isolates as falsely 

susceptible and MSS as falsely resistant to these agents.
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Table 1

Inferred Susceptibility to β-Lactam Agents for Staphylococci Based on Testing of Penicillin and Oxacillin or 

Cefoxitin

Actual Susceptibility
Result

Penicillin
Oxacillin or

Cefoxitin Inferred Susceptibility Result

S S S to penicillins (penicillinase-labilea and stableb), β-lactam/β-lactamase inhibitor combinationsc, cephemsd, and 

carbapenemse

R S R to penicillinase-labile penicillins

S to penicillinase-stable penicillins, β-lactam/β-lactamase inhibitor combinations, antistaphylococcal cephems, and 
carbapenems

R R R to penicillins, β-lactam/β-lactamase inhibitor combinations, cephems, and carbapenems except newer 
cephalosporins with anti-MRSA activity (when confirmed by standardized testing [eg, ceftaroline])

Abbreviations: MRSA, methicillin-resistant Staphylococcus aureus; R, resistant; S, susceptible.

a
Penicillinase-labile penicillins: amoxicillin, ampicillin, azlocillin, carbenicillin, mezlocillin, penicillin, piperacillin, ticarcillin.

b
Penicillinase-stable penicillins: cloxacillin, dicloxacillin, flucloxacillin, methicillin, nafcillin oxacillin.

c
β-Lactam/β-lactamase inhibitor combinations: amoxicillin-clavulanic acid, ampicillin-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic 

acid.

d
Antistaphylococcal cephems include the oral cephems (cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime, loracarbef) and the parenteral 

cephems (cefamandole, cefazolin, cefepime, cefmetazole, cefonicid, cefoperazone, cefotaxime, cefotetan, ceftizoxime, ceftriaxone, cefuroxime, 
cephalothin, ceftaroline moxalactam) for indications approved by the US Food and Drug Administration or other regulatory bodies in the country 
of use.

e
Carbapenems: doripenem, ertapenem, imipenem, meropenem.
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Table 2

β-Lactam Resistance Mechanisms in Staphylococci, Detection Methods, and Reporting Recommendationsa

Resistance Mechanism Organism Detection and Reporting: 
CLSI

Detection and Reporting: 
EUCAST

blaZ-mediated penicillinase (penicillin 
resistance)

All Staphylococcus species Penicillin disk zone edge for 
S. aureus or induced β-
lactamase test (Nitrocefin) 
for all CoNS

Penicillin disk zone edge for all 
Staphylococcus (notes that 
cephalosporin-based β-lactamase 
tests are unreliable for 
staphylococcal penicillinase)

mecA-mediated oxacillin resistance, 
PBP2a (oxacillin resistance)

S. aureus, S. lugdunensis Cefoxitin disk diffusion or 
MIC, oxacillin MIC, mecA 
PCR, or PBP2a detection

Cefoxitin disk diffusion or MIC, 
oxacillin MIC, mecA PCR, or 
PBP2a detection

CoNS Cefoxitin disk diffusion or 
oxacillin MIC, mecA PCR, 
or PBP2a detection

Cefoxitin disk diffusion or 
oxacillin MIC, mecA PCR, or 
PBP2a detection

mecC-mediated oxacillin resistance S. aureus, (1 report in CoNS) Cefoxitin disk diffusion or 
MIC, oxacillin MIC, mecC, 
PCR

Cefoxitin disk diffusion or MIC, 
oxacillin MIC, mecC PCR

Abbreviations: CLSI, Clinical and Laboratory Standards Institute; CoNS, coagulase-negative staphylococci; EUCAST, European Committee on 
Antimicrobial Susceptibility Testing; MIC, minimum inhibitory concentration; PBP2a, penicillin-binding protein 2a; PCR, polymerase chain 
reaction.

a
Ceftaroline resistance for Staphylococcus aureus can be determined by performing disk diffusion or MIC susceptibility testing.
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Table 3

β-Lactam Agents With US Food and Drug Administration Indications for Treating Staphylococcal Infectionsa

Drug Year Approved Clinical Indications

Amoxicillin 1976 Ear, nose, throat, skin and skin structure, and lower respiratory tract infections

Amoxicillin-clavulanic acid 1984 Skin and skin structure infections

Ampicillin 1971 Respiratory tract infections, septicemia, and endocarditis

Ampicillin-sulbactam 1986 Skin and skin structure infections

Cefaclor 1979 Skin and skin structure infections

Cefamandole 1978 Lower respiratory tract, blood, skin and soft tissue, bone and joint infections

Cefazolin 1973 Respiratory tract, skin and skin structure, biliary tract, blood, bone and joint infections

Cefdinir 1997 Skin and skin structure infections

Cefepime 2010 Skin and skin structure infections

Cefmetazole 1989 Skin and soft tissue infections, urinary tract infections

Cefoperazone 1982 Respiratory tract, blood, skin and skin structure infections

Cefotaxime 2000 Lower respiratory tract, genitourinary, blood, skin and soft tissue, bone and joint infections

Cefotetan 1985 Lower respiratory tract, skin and skin structure, gynecologic, bone and joint infections

Cefpodoxime 1992 Skin and skin structure infections

Cefprozil 1991 Skin and skin structure infections

Ceftizoxime 1983 Blood, lower respiratory tract, urinary tract, intra-abdominal, skin and skin structure, bone 
and joint infections

Ceftriaxone 1984 Lower respiratory tract, blood, skin and soft tissue, bone and joint infections

Cefuroxime 1983 Lower respiratory tract, blood, skin and soft tissue, bone and joint infections

Cephalothin 1974 Skin and skin structure infections

Cloxacillin 1980 All infections caused by penicillinase-producing staphylococci that is methicillin susceptible

Dicloxacillin 1971 All infections caused by penicillinase-producing staphylococci that is methicillin susceptible

Ertapenem 2001 Skin and skin structure infections, osteomyelitis

Flucloxacillin 1971 Skin and soft tissue, respiratory tract, urinary tract, blood, and bone infections

Imipenem 1985 Lower respiratory tract, urinary tract, intra-abdominal, gynecologic, blood, skin and skin 
structure, bone and joint infections

Loracarbef 1991 Skin and skin structure infections

Meropenem 1996 Skin and skin structure infections

Methicillin 1961 All infections caused by penicillinase-producing staphylococci that is methicillin susceptible

Moxalactam 1980 Skin and soft tissue, bone and joint, respiratory tract infections

Nafcillin 1984 All infections caused by penicillinase-producing staphylococci that is methicillin susceptible

Oxacillin 1971 All infections caused by penicillinase-producing staphylococci that is methicillin susceptible

Penicillin 1964 Skin and soft tissue infection

Piperacillin-tazobactam 1993 Skin infections and nosocomial pneumonia

Ticarcillin-clavulanate 1985 Septicemia, lower respiratory tract, bone, joint, urinary tract, and gynecologic infections

a
Despite US Food and Drug Administration–approved indications, it is the opinion of the authors that ceftazidime should not be used for 

staphylococcal infections.
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Table 4

Summary of In Vitro Susceptibility Studies for Staphylococcus Species and β-Lactams

Study Isolates (No.) Conclusions Comments Source

S. aureus

1 MRSA (70) MSSA strains were highly susceptible (all MIC ≤4 
µg/mL) to cephalothin, cefoperazone, and cefotaxime 
compared to MRSA strains. MIC50 and MIC90 of MSSA 
strains were 8- to-128-fold lower than MRSA isolates 
(MIC90 >32 for MRSA).

Data support the deduction of cephalothin, 
cefoperazone, and cefotaxime results based 
on oxacillin or cefoxitin results.

[53]

MSSA (24)

MRSA stains had MIC range of 0.25–256 µg/mL. Strains 
with high MICs to methicillin (MIC ≥64 µg/mL) also had 
high MICs to cephalothin (MIC ≥32 µg/mL), 
cefoperazone (MIC ≥64 µg/mL), and cefotaxime (MIC 
≥128 µg/mL).

2 MRSA (98) MRSA isolates had high MIC50 and MIC90 values: 
cefuroxime (MIC50 >256, MIC90 >256) cefotaxime 
(MIC50 = 32, MIC90 >256), and cefepime (MIC50 = 48, 
MIC90 >256).

Majority of MRSA isolates have MICs >8 
µg/mL to cefuroxime, cefotaxime, and 
cefepime, supporting the deduction of results 
for these agents based on oxacillin or 
cefoxitin results.

[49]

Sixteen isolates exhibited MIC <2 µg/mL to cephalothin; 
10 isolates were susceptible to cefuroxime, cefotaxime, 
or cefepime (MIC ≤8 µg/mL).

Inclusion of breakpoints for β-lactams other 
than penicillin, oxacillin, and cefoxitin can 
lead to falsely susceptible results in MRS.

3 MSSA (1313) MSSA isolates were 100% susceptible to cefepime (MIC 
≤8 µg/mL), 99.8% susceptible to ceftriaxone (MIC ≤8 
µg/mL), and 0% resistant to ceftriaxone (MIC ≥64 
µg/mL) and cefepime (MIC ≥32 µg/mL).

Susceptibility of staphylococci to cefepime 
and ceftriaxone can be inferred from 
oxacillin or cefoxitin results.

[48]

4 MRSA (4453) MSSA isolates had ceftriaxone MIC90 of 4 µg/mL, 96% 
of isolates had MICs to ceftriaxone <4 µg/mL, and 0.3% 
were considered resistant; 3.7% were not categorized as 
susceptible or resistant.

It is critical to know breakpoint criteria and 
methods used when evaluating reports in the 
literature. Authors specified that FDA 
breakpoints were applied when available but 
did not provide actual MIC values on those 
isolates categorized as resistant with MICs 
>4 µg/mL.

[47]

MSSA (4016)

4% of MSSA isolates had ceftriaxone MICs >4 µg/mL 
and were considered ceftriaxone nonsusceptible using 
FDA breakpoints (MIC ≤4 µg/mL, susceptible). The 
actual MIC for these isolates was not reported. This emphasizes that the inclusion of 

breakpoints for these ceftriaxone and 
meropenem can lead to falsely resistant 
results in MSSA.

MSSA isolates demonstrated MIC90 of ≤0.12 µg/mL to 
meropenem.

MRSA isolates were all (100%) resistant to ceftriaxone 
(MIC >64 µg/mL).

Results for ceftriaxone and meropenem can 
be inferred from oxacillin or cefoxitin 
results.

Coagulase-negative staphylococci

5 MRCNS (26) 100% of MSCNS isolates were susceptible to cefradine, 
ceftriaxone, cephalothin, and cefamandole (MIC ≤8 µg/
mL).

MSCNS can be considered susceptible to 
cefradine, ceftriaxone, cephalothin, and 
cefamandole.

[50]

MSCNS (36)

Susceptible results for MRCNS isolates: 7.7% for 
ceftriaxone (MIC ≤8 µg/mL), 84.6% for cephalothin 
(MIC ≤8 µg/mL), 96.2% for cefamandole (MIC ≤8 µg/
mL), and 0% for cefradine (MIC ≤8 µg/mL)

Presence of heteroresistant populations of 
MRS can lead to falsely susceptible results 
for cephalosporins.

Inclusion of breakpoints for β-lactams other 
than the penicillin, oxacillin, and cefoxitin 
can lead to falsely susceptible results in 
MRCNS.

Susceptible results for highly methicillin-resistant (MIC 
>128 µg/mL) subpopulation of CNS: 0% for ceftriaxone, 
3.8% for cephalothin, 46% for cefamandole, and 0% for 
cefradine.

6 MSCNS (182) 100% of MSCNS isolates were susceptible to cefepime 
(MIC ≤8 µg/mL) and 98.3% were susceptible to 
ceftriaxone (MIC ≤8 µg/mL). The MIC90 for ceftriaxone 

Susceptibility of staphylococci to cefepime 
and ceftriaxone can be inferred from 
oxacillin or cefoxitin results.

[48]
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Study Isolates (No.) Conclusions Comments Source

was 4 µg/mL, and 0.6% (1 isolate) was considered 
resistant; 1.1% of isolates were not categorized as 
susceptible or resistant.

This emphasizes that the inclusion of 
breakpoints for these cefepime and 
ceftriaxone can lead to falsely resistant 
results in MSCNS.1.7% of MSCNS had ceftriaxone MICs >8 µg/mL and 

were considered ceftriaxone nonsusceptible using CLSI 
breakpoints (MIC ≤8 µg/mL, susceptible).

Abbreviations: CLSI, Clinical and Laboratory Standards Institute; CNS, coagulase negative staphylococci; FDA, US Food and Drug 
Administration; MIC, minimum inhibitory concentration; MRS, methicillin-resistant staphylococci; MRSA, methicillin-resistant Staphylococcus 
aureus; MRCNS, methicillin-resistant coagulase negative staphylococci; MSCNS, methicillin-susceptible coagulase negative staphylococci; MSSA, 
methicillinsusceptible Staphylococcus aureus.
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